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A method for reconstructing the potential energy landscape of simple polypeptidic chains is described. We
show how to obtain a faithful representation of the energy landscape in terms of a suitable directed graph.
Topological and dynamical indicators of the graph are shown to yield an effective estimate of the time scales
associated with both folding and equilibration processes. This conclusion is drawn by comparing molecular
dynamics simulations at constant temperature with the dynamics on the graph, defined as a temperature-
dependent Markov process. The main advantage of the graph representation is that its dynamics can be
naturally renormalized by collecting nodes into “hubs” while redefining their connectivity. We show that the
dynamical properties at large time scales are preserved by the renormalization procedure. Moreover, we obtain
clear indications that the heteropolymers exhibit common topological properties, at variance with the ho-
mopolymer, whose peculiar graph structure stems from its spatial homogeneity. In order to distinguish between
“fast” and “slow” folders, one has to look at the kinetic properties of the corresponding directed graphs. In
particular, we find that the average time needed to the fast folder for reaching its native configuration is two
orders of magnitude smaller than its equilibration time while for the bad folder these time scales are
comparable.
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I. INTRODUCTION

Numerical simulations are quite often an effective ap-
proach for studying dynamical properties of systems with
many degrees of freedom. In particular, when the forces act-
ing among the constituent particles �atoms, molecules,
monomers, etc.� can be well approximated as pairwise inter-
actions, molecular dynamics �MD� is a useful tool for inves-
tigating complex dynamical phenomena.

The main practical limitation to this basic approach is the
existence of relaxation processes, whose time scales are sev-
eral orders of magnitude longer than the typical time scale of
the microscopic dynamics. Models of structural glasses ex-
hibit such puzzling features that are associated with the
anomalously high viscosity of these amorphous materials
and with the aging phenomenon �1�. Something similar oc-
curs in proteins, where the folding or the equilibration pro-
cesses may proceed over exceedingly long time scales with
respect to the microscopic ones �2�. In all of these cases,
reproducing the interesting phenomena starting from a mi-
croscopic description can be very expensive in terms of CPU
time and mass storage memory. A possible solution to such
difficulties could arise from a drastic simplification of the
microscopic model by coarse graining it to derive an effec-
tive representation in terms of macroscopic modes. Such a
strategy is normally implemented to obtain a hydrodynamic

description after having removed the fast time scales. This
results can be achieved by the so-called “projection tech-
nique,” which is at the basis of the linear-response theory by
Green and Kubo �3�. Unfortunately, it applies successfully
only to simple gases and liquids �4�.

More effective strategies to characterize anomalously
long relaxation processes should exploit the peculiar struc-
ture of the energy landscape �5,6�. In particular, the phase
space is often hierarchically partitioned into loosely con-
nected regions: a trajectory may wander over a very long
time inside a restricted area before finding a way out through
some “bottleneck” and enter unexplored regions. For tem-
peratures small enough with respect to the energy barriers of
the bottlenecks, the situation may look quite similar to the
phenomenon of ergodicity breaking that characterizes phase
transitions in statistical mechanics. On the other hand, since
in MD the number of degrees of freedom is finite, there are
no true phase transitions and the whole phase space can be
eventually explored �with the exception of exceedingly small
energies�.

On a relatively fine scale, the potential energy landscape
�PEL� can be seen as a collection of basins of attraction of
the local minima of the potential energy �5,7,8�. The basin of
attraction of a local minimum is the set of points in phase
space whose gradient dynamics converges to that minimum.
Adjacent basins of attractions are separated by the stable
manifolds of other stationary points, the saddles. By associ-
ating a different symbol to each basin of attraction, a trajec-
tory can be encoded as a sequence of symbols and of the
corresponding residence times. Accordingly, MD can be ef-
fectively replaced by a stochastic dynamics defined on a con-
nected graph; an interesting application of this approach has
been already reported for polyalanine �9�. The local minima,
or, equivalently, their basins of attraction, are the nodes of
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this graph. Two nodes are connected by a link if their basins
of attractions are adjacent, in which case two �generally dif-
ferent� transition rates can be defined. We estimate the rates
by exploiting a suitable high-dimensional generalization of
the Arrhenius law �the so-called Langer’s formula �10,11�;
see Sec. II C�. As expected, the validity of this expression
depends crucially on the temperature, and in particular it
works for temperatures that are comparable to or lower than
the typical energy barriers; otherwise the memory of previ-
ous jumps cannot be neglected.

In this paper we test this approach by studying simple
model proteins whose dynamical features were analyzed in
previous publications �12,13�. In Sec. II, we summarize the
protein model and the method used for reconstructing
minima and saddles of the PEL. We also show that the strat-
egy proposed in �13� can be improved by adopting a suitable
search for identifying shortcuts that connect minima sepa-
rated by large conformational distances. Later in this section
we show how one can plug a Markov-chain structure onto
the reconstructed directed graph. In Sec. III we discuss how
such a representation can be used to determine equilibrium
and nonequilibrium properties, to be compared with those
obtained by MD simulations. As expected, the “graph” ap-
proximation is effective in a range of temperatures close to
the folding one. In Sec. IV we comment about the advan-
tages of the graph approximation with respect to MD simu-
lations. In fact, one can easily realize that a suitable recon-
struction of the PEL, including a sufficient sampling of
minima and saddles, requires a considerable numerical ef-
fort, comparable with MD simulations. However, these ef-
forts are made once and for all and do not need to be re-
peated for different temperatures. Moreover, the graph
dynamics �GD� can be further simplified without loosing the
essential details. This can be done by means of a renormal-
ization procedure that amounts to progressively removing
irrelevant nodes and saddles. Furthermore, additional infor-
mation about the nature of model proteins can be obtained by
comparing the static properties of the graphs with those of
random directed graphs. This allows us to conclude that
some general static features are common to any model of a
polypeptidic chain. The main specific signatures of a protein
specimen �fast folder� seem rather to be associated with its
dynamical features. This is not completely unexpected, al-
though quite often one finds in the literature claims about
specific static properties of the energy landscape as intrinsic
to real proteins �14�. Our analysis at least challenges this
widespread belief.

II. MODEL, ITS ENERGY LANDSCAPE,
AND THE DIRECTED GRAPH

A. Simple toy model of polypeptidic chains in two dimensions

For the sake of simplicity, we use a simple toy model to
test the idea of approximating the thermalized dynamics of a
polypeptidic chain with a stochastic dynamics on a directed
graph. The model, introduced in �15�, is a slight modification
of the 2d off-lattice HP model originally proposed by Still-
inger et al. in �16�. It is defined by the Hamiltonian

H = T + V , �1�

where

T = �
i=1

L
px,i

2 + py,i
2

2
�2�

is the kinetic energy, while the intramolecular potential

V = �
i=1

L−1

V1�ri,i+1� + �
i=2

L−1

V2��i� + �
i=1

L−2

�
j=i+2

L

V3�rij,�i,� j� �3�

is composed of three terms: a stiff nearest-neighbor harmonic
potential V1, which keeps the bond distance almost constant,
a three-body potential V2, which measures the energetic cost
of local bending, and a Lennard-Jones potential V3 acting
between all pairs of monomers i and j such that �i− j��1,

V1�ri,i+1� = ��ri,i+1 − r0�2,

V2��i� =
1 − cos �i

16
,

V3�ri,j� =
1

ri,j
12 −

ci,j

ri,j
6 . �4�

This Hamiltonian schematizes a real protein as a one-
dimensional chain of L pointlike monomers of two types,
hydrophobic �H� and polar �P�. Accordingly, a hetero-
polymer is identified by a sequence of binary symbols indi-
cating the monomer type. The monomers are assumed to
have the same unitary mass �all parameters are expressed in
terms of adimensional arbitrary units�. The space coordi-
nates of the ith monomer are qi= �xi ,yi� and their con-
jugated momenta are pi= �px,i , py,i�= �ẋi , ẏi�. The variable ri,j

=��xi−xj�2+ �yi−yj�2 is the distance between ith and jth
monomers and �i is the bond angle at the ith monomer. The
parameters � and r0 are fixed to the values 20 and 1, respec-
tively. V3 is the only potential term that depends on the na-
ture of the monomers. In fact, ci,j =

1
8 �1+�i+� j +5�i� j�, where

�i=1��i=−1� if the monomer is hydrophobic �polar�. As a
result, the interaction is attractive if both residues are either
hydrophobic or polar �with ci,j =1 and 1/2, respectively�,
while it is repulsive if the residues belong to different species
�cij =−1 /2�.

Here, we focus our investigation on three sequences of 20
monomers that represent the three classes of different folding
behaviors observed in this model:

�i� �S0� is a homopolymer composed of 20 H residues;
�ii� �S1�= �HHHP HHHP HHHP PHHP PHHH� is a

sequence that has been identified as a fast folder in �17�; and
�iii� �S2�= �PPPH HPHH HHHH HHHP HHPH� is a

randomly generated sequence that has been identified as a
slow folder in �15�.

The three characteristic temperatures T�, Tf, and Tg of
each sequence have been determined in �12� by MD simula-
tions, where the chains have been put in contact with a
Langevin heat reservoir. Their numerical values are reported
in Table I together with the number n0 of minima directly
connected to the native state via a first-order saddle. Here n0
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has been obtained by a more refined analysis with respect to
that performed in �13�.

Several distances can be defined in order to distinguish
between two configurations C1 and C2 of a two-dimensional
chain. A particularly simple one is the angular distance

d��C1,C2� =
1

L − 2 �
n=1

L−2

��i�C1� − �i�C2�� , �5�

where

�i�C� =
�qi − qi+1� . �qi+1 − qi+2�

ri,i+1ri+1,i+2
�6�

is the ith backbone angle of configuration C represented by
the coordinates qi.

B. Reconstruction of the energy landscape

The PEL can be reconstructed by implementing an effec-
tive strategy to identify the local minima of the potential
energy and the first-order saddles �i.e., extremal points that
are local maxima only along one direction� separating them
in the configuration space. A first extensive search for
minima can be performed by sampling a sufficiently large
number of MD trajectories at a temperature T close to Tf, as
we wish to explore the relevant processes connected with the
protein �un�folding. The constant temperature constraint is
imposed by attaching a Langevin heat bath to all degrees of
freedom. The strength of the coupling with the heat bath is
given by the dissipation rate �=7: this value, expressed in
the adimensional units of the model, has been estimated from
the knowledge of the relaxation rate of an amino acid in a
solvent �typically, water� �12�. Trajectories are sampled at a
time pace �t=0.1 �time will be always expressed in the natu-
ral adimensional units�, which is a bit longer than the resi-
dence time within a typical basin of attraction. The basin of
attraction is identified by taking each sampled configuration
as the initial condition for an overdamped dynamics �see
�13��, converging to the corresponding minimum of the po-
tential energy. As shown in �13�, a large number of minima
of the PEL of sequences S0, S1, and S2 can be identified by
generating O�103� Langevin trajectories of duration t=103 in
the natural time units of model �1�.

Once this preliminary set of minima has been constructed,
one is interested in determining pairs of adjacent minima,
i.e., minima that are connected through a first-order saddle

�this is the typical case for smooth potentials such as those
invoked in Hamiltonian �1�—see �18� for the specific re-
quirements concerning the smoothness of the potential�. In
the last decade, various methods have been proposed to de-
sign efficient algorithms for the search of saddles �19–21�.
Unfortunately, none of these approaches is so effective to be
really useful in this context. As shown in �13�, one can take
advantage of a metric criterion to identify pairs of potentially
adjacent minima: they are typically separated by an angular
distance d� smaller than d�

thr=0.2 �see �13��. However, in
spite of the effectiveness of this criterion, one cannot expect
to identify all the relevant saddles involved in the folding
process. Actually, it has been observed that the PELs of se-
quences S1 and S2 contain a relatively small set of first-order
saddles connecting pairs of minima, whose d� is definitely
larger than d�

thr. In order not to miss such saddles, one can
use a more refined strategy �see �13��. The identified minima
are taken as initial conditions of the Langevin dynamics at
T=Tf. The dynamics is then let evolve until it enters the
basin of attraction of a different minimum. The test is made
by determining every ��=10−3 units the corresponding ba-
sin by using the sampled configurations as initial conditions
for an overdamped dynamics �22�. Whenever new minima
are discovered, they are added to the database. Finally, after
refining the position of the corresponding saddle with the
procedure described in �13�, the saddle itself is added to the
database of the links between adjacent minima.

A number of minima N and saddles S obtained for each
sequence are reported in the first two rows of Table II. There,
we have also reported the number of minima �Nf� and
saddles �Sf�, with a potential energy smaller than the “fold-
ing energy” Ef =V0+kBTf�2L−3� /2. We expect that these
subsets should contain the main elements associated with the
folding process. Notice that the fraction of minima and
saddles below Ef reduces much more for the heteropolymer
sequences �S1 and S2� than for the homopolymer �S0�. This
is a first indication of quantitative differences among the
PELs of different sequences.

C. Directed graph

The minima and first-order saddle database can be used to
construct a directed graph. Each node of the graph corre-
sponds to one minimum �or, equivalently, to its basin of at-
traction�. In what follows we assume that the N nodes are
ordered in increasing values of their potential energy and
assign them an index i that runs from 1 to N. Accordingly,

TABLE I. The collapse transition temperature T�, the folding
temperature Tf, the “glassy” temperature Tg, and the number n0 of
minima directly connected to the native configuration for the se-
quences S0 �homopolymer�, S1 �fast folder�, and S2 �slow folder�.

S0 S1 S2

T� 0.16 0.11 0.13

Tf 0.044 0.061 0.044

Tg 0.022 0.048 0.025

n0 57 66 69

TABLE II. Number of minima, N, and saddles, S, for the three
analyzed sequences. The number of minima, Nf, and saddles, Sf,
below the folding energy Ef is also reported.

S0 S1 S2

N 180156 87580 110524

S 349197 213219 304303

Nf 99797 17726 35852

Sf 276958 85014 150809
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i=1 corresponds to the so-called native state. A link between
node i and node j means that they are connected by a first-
order saddle si,j. The transition rates 	i,j and 	 j,i are thereby
associated to the link by means of Langer’s formula �10,11�,
which generalizes the usual Arrhenius formula by including
the entropic factors that are estimated from the curvatures of
minima and saddles of the potential energy hypersurface.
The expression for 	i,j reads

	i,j =

� i,j

��

	
k=1

L�


i
�k�

	
k=1

L�−1


� i,j
�k�

exp
−
V�si,j� − V�i�

kBT
� , �7�

where �
i
�k� are the L�=2L−3 nonzero eigenfrequencies of

the minimum associated with node i, �
� i,j
�k�  are the L�−1

nonzero frequencies corresponding to the contracting direc-
tions of si,j, and 
� i,j is the frequency associated with the
only expanding direction of si,j. The dissipation rate � is the
same, used for defining the Langevin dynamics mentioned in
Sec. II B. The exponential factor in Eq. �7� depends on the
height of the energy barrier V�si,j�−V�i�, where we have used
the short-hand notations V�si,j� and V�i� to denote the values
of the potential energies of the saddle si,j and of the mini-
mum i, respectively. Finally, the expression for 	 j,i is ob-
tained by exchanging the index i with j and noticing that 
�

and 
� are both symmetric �the same saddle contributes to
	i,j and 	i,j�.

The nonsymmetric N�N connectivity matrix 	 provides
a faithful description of the original dynamics as long as one
can neglect the memory of previous transitions. This is made
explicit in the master equation ruling the evolution of the
probability Pi�t� that the polymer is in node i at time t,

dPi�t�
dt

= �
j=1

N

Pj�t�	 j,i − Pi�t��
j=1

N

	i,j . �8�

This master equation can be cast into matrix form,

dP�t�
dt

= − WP�t� , �9�

where P�t� is a vector of dimension N at time t, whose ele-
ments are Pi�t�, while the entries of the Laplacian matrix W
are given by the expression

Wi,j = i,j�
k=1

N

	 j,k − 	 j,i. �10�

W is a nonsymmetric real matrix with positive diagonal ele-
ments and whose rows and columns sum up to zero: accord-
ing to Gershgorin’s theorem �23�, all its eigenvalues ri, i
=1, . . . ,N, are real and positive apart from the null eigen-
value r1=0 �usually, ri’s are ordered in increasing value of
the index i�. The corresponding eigenvectors are denoted
with w�i�. The stationary probability coincides with the first
eigenvector w�1�. Its components are

wi
�1� = �

e−�V�i�/kBT�

	
k=1

L�


i
�k�

, �11�

where � is a suitable normalization constant, such that
�i=1

N wi
�1�=1. By combining Eqs. �11� and �7�, one can verify

that detailed balance is satisfied, namely, that

wi
�1�	i,j = wj

�1�	 j,i. �12�

In general, the nonzero eigenvalues of W, ri with i
=2, . . . ,N can be determined only numerically; detailed bal-
ance simplifies the calculations as it makes possible to trans-
form W into a symmetric matrix W=T−1WT �24�, with

T = �
�w1

�1� 0

�

0 �wN
�1� � . �13�

By expanding the initial probability distribution in terms of
the eigenvectors, P�0�=�k=1

N ckw
�k� �with real ck and the nor-

malization condition c1=1 �see Appendix A�� and the prob-
ability Pi�t� to be on the node i at time t can be written as

Pi�t� = �
k=1

N

ckwi
�k�e−rkt. �14�

This expression stems from the orthogonality of the eigen-
vectors w�k� �see Appendix A�.

Another consequence of Eq. �12� is that the stationary
probability flux does depend neither on the starting nor on
the arrival minima. In the harmonic approximation, it de-
pends only on the energy and on the curvature of si,j,

Ji,j = wi
�1�	i,j =


� i,j

	
k=1

L�−1


� i,j
�k�

e�−V�si,j�/kBT�. �15�

We conclude this section by observing that the topological
properties of the directed graph can be studied by introduc-
ing the topological connectivity matrix 	0, where all the non-
zero elements of 	 are set to 1. By replacing 	0 with 	 in Eq.
�10�, one obtains the topological Laplacian matrix W0. We
show in the following sections that the knowledge of the
latter matrix allows us to infer some general properties of the
corresponding graph. For instance, the power-law behavior
of the low-frequency component of its spectral density deter-
mines the spectral dimension of the graph �25�. This extends
the concept of Euclidean dimension to graphs that are not
defined on a regular lattice.

III. COMPARISON BETWEEN MD AND THE MARKOV
CHAIN ON THE DIRECTED GRAPH

In this section we investigate to what extent the stochastic
dynamics defined by the Laplacian matrix W is consistent
with MD simulations at least for a temperature T close to Tf.
A first simple test can be performed on the expectation val-
ues of equilibrium properties. These can be analytically de-
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termined on the graph from the stationary probability vector
w�1� defined in Eq. �11�. Since equilibrium properties depend
only on the identified minima, this test can provide a quan-
titative verification of the reliability of the algorithm used for
locating them in the PEL. In particular, we have compared
MD estimates of the folding temperatures Tf of the consid-
ered sequences with the same quantities computed from the
probability distribution, as given by the eigenvector w�1�. In
Fig. 1 we plot the equilibrium probability Pf that a sequence
is in the native state or in the set of minima directly con-
nected with it as a function of temperature T. In practice this
amounts to measuring the fraction of “folded” sequences at a
given T. Then, we apply the same criterion used in equilib-
rium MD simulations �13�: Tf is determined as the tempera-
ture value at which 50% of the polymer configurations are in
the folded state. The results obtained with MD and with the
directed graph representation are reported in Table III. There
is a reasonable agreement for the good folder S1, while for
both S0 and S2, Tf is underestimated. This suggests that we
are missing several paths that allow returning to the native
state: it is not surprising that this limitation manifests itself
precisely in the cases of the most glassy landscapes.

Next, we have performed a more accurate test by deter-
mining the average exit time from a given region in the PEL
and the first passage time tf from the native state. The former
aims at verifying the conjecture that MD corresponds to a
sequence of thermally activated transitions through the nodes
of the directed graph; the latter allows us to estimate the time
scales involved in the folding process.

In the GD, the average time spent at node i can be esti-
mated as

�ti� =
1

�
k

	i,k

, �16�

where the index k runs over all the nodes directly connected
with i. Moreover, the probability of moving from node i to
node j is

�i,j = 	i,j�ti� . �17�

Accordingly, a trajectory on the directed graph can be repre-
sented by an ordered set of symbols �i1 , i2 , i3 , . . . , in� labeling
the visited nodes, while its time duration is

t = �
�=i

n

�t�� . �18�

Notice that the inverse dissipation rate 1 /� is the time scale
that allows establishing a correspondence between MD and
GD �see Sec. II B and Eq. �7��.

We have determined the average exit time of the sequence
S1 from �i� the native state, �ii� the first shell �i.e., the set of
the n0 minima directly connected with the native one�, and
�iii� the set of minima M, whose angular distance d� from
the native state is smaller than 0.4 �this latter set contains
2341 minima, including the first shell�. MD averages have
been performed over 103 trajectories, starting from each
minimum in the considered set, while GD averages have
been performed over 104 stochastic paths. The results for T
=Tg=0.4 and T=Tf =0.6 are reported in Table IV. There one
can see that the agreement progressively deteriorates for ini-
tial regions of larger sizes: GD increasingly underestimates
the escape times. This is quite surprising, as one would have
a priori expected that GD escape times become longer be-
cause of undetected escape routes. The only explanation for

0 0.02 0.04 0.06 0.08 0.1
T

0

0.5

1

P
f

FIG. 1. Folding probability Pf estimated from Eq. �11� as a
function of temperature T. The full dotted-dashed and dashed lines
correspond to S0, S2, and S1, respectively.

TABLE III. Folding temperatures as computed by means of MD
simulations �Table I� and of the analytical expression of the station-
ary distribution on the directed graph.

MD Graph

S0 0.044 0.026

S1 0.061 0.066

S2 0.044 0.033

TABLE IV. Comparison of average escape times from three
different sets of initial conditions computed by MD and GD simu-
lations at temperatures T=0.04 and T=0.06 for the sequence S1.
The first shell contains n0 minima, while the set M contains 2341
minima.

From the native state

T=0.04 T=0.06

MD 4.1�103 1.6�102

GD 3.5�103 85

From the first shell

T=0.04 T=0.06

MD 2.3�105 4.4�102

GD 1.3�105 2.4�102

From the set M
T=0.04 T=0.06

MD 3.3�106 2�104

GD 1.1�106 7�102
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the discrepancy we are able to propose is that the known
overestimation of the transition rate in Langer’s formula �13�
becomes increasingly severe for the minima that are not too
close to the native state.

We have also estimated the first passage time tf of S1 to
its native minimum for three different classes of initial con-
ditions: the minima in the first shell, the set M, and the yet
larger set of minima N, whose potential energy is smaller
than Ef =−3.45 �17 726 minima�. The simulations have been
performed again by averaging over 103 MD trajectories and
104 GD paths. The data reported in Table V reveal a reason-
ably good agreement for T=0.04, while for T=0.06 the first
passage time on the graph is much smaller than the MD
estimate. Apart from the approximation of Langer’s formula,
the main reason for this discrepancy is the poor reconstruc-
tion of the PEL for high values of the potential energy. In
fact, we have checked that the agreement between the two
estimates improves significantly—up to a factor of 5—if we
exclude, both in the GD and MD cases, all the trajectories
that escape from the chosen set of initial minima. This im-
plies that MD visits regions of the PEL that are poorly re-
produces by the GD. Only for temperatures smaller than Tf,
this effect is sufficiently negligible. Unfortunately, a finer
sampling of the PEL would require significantly larger com-
putational efforts even to produce small improvements.

For what concerns S2, measurements of the average fold-
ing time at T=0.06 starting from the set of minima with
potential energy below Ef give the quantitatively consistent
estimates of 1.3�106 for MD and 9.8�105 for GD. At T
=0.04 MD simulations are practically unfeasible. In fact, GD
simulations predict an average folding time O�108�, i.e.,
three orders of magnitude larger than for S1. The situation is
even worse for MD simulations of S0. GD simulations sug-
gest that already at T=0.06 the average folding time raises

up to O�109�. Therefore, reliable estimates of the average
folding time are possible only for T�T�, where we know
that the graph representation is unreliable �12�.

IV. RENORMALIZATION OF THE DIRECTED GRAPH

Although a considerably high computational price has to
be paid to eventually assemble a sufficiently accurate graph,
GD has several advantages. First of all, there are no low-
temperature limitations, as one has just to draw at random
escape times from the single minima. Moreover, the graph
structure can be easily manipulated to identify general prop-
erties. In particular, one can progressively renormalize the
graph by gluing together those nodes that are more “tightly
connected.” More precisely, our approach consists in the fol-
lowing steps:

�i� Given any pair of connected nodes i and j, we compute
the height of the energy barrier as

�m = V�si,j� − VM , �19�

where VM =max�V�j� ,V�i��.
�ii� The energy barriers are ordered from the minimum �1

to the maximum value.
�iii� The two nodes i and j bridged by the smallest barrier

are identified with one another. In practice, node j is elimi-
nated, while the transition rates of node i are rescaled in such
a way that the equilibrium eigenvector w̃�1� reads as

w̃i
�1� = wi

�1� + wj
�1� �20�

while the transition rates 	̃k,j become

	̃k,i = 	k,i + 	k,j ,

	̃i,k =
	 j,kwj

�1� + 	i,kwi
�1�

wj
�1� + wi

�1� . �21�

�iv� In the list of barriers connecting neighboring minima,
the index j is replaced everywhere with i.

�v� The two minima corresponding to the next lowest bar-
rier are identified and the same procedure described in the
previous two steps is repeated until �m�kBT.

One can easily verify that w̃�1� is the equilibrium eigen-
vector of the corresponding renormalized evolution matrix

W̃. Analogously, it can be seen that the rescaled dynamical
rules still satisfy the detailed balance condition �12�. Notice
that a similar methodology, termed “disconnectivity graph”
approach, has been developed in recent years and success-
fully applied to both the reconstruction of the PEL �26� and
of the free-energy landscape �27� of model proteins and pep-
tides.

The renormalization procedure transforms also the topo-
logical connectivity matrix 	0 and the corresponding Laplac-

ian matrix W0 to 	̃0 and W̃0, respectively. It is worth noting
that the renormalization method allows, in principle, us to
derive the topology of the approximating graph and the tran-
sition rates that govern the master equation at any desired
temperature. The effects of temperature on the dynamics of
the system can therefore be analyzed with relative computa-

TABLE V. Comparison of average first passage times at the
native state from three different sets of initial conditions computed
by MD and GD simulations at temperatures of T=0.04 and T
=0.06 for the sequence S1. The number of minima in the first shell
and that in the set M have been reported in Sec. IV, while the set N
contains 17 726 minima.

From the first shell

T=0.04 T=0.06

MD 5.7�104 1.2�104

GD 4.3�104 4.6�103

From the set M
T=0.04 T=0.06

MD 8.5�103 4.1�103

GD 4.4�103 5.1�102

From the set N
T=0.04 T=0.06

MD 6.9�104 5.8�104

GD 4.6�104 5.8�103
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tional ease at variance with previous approaches based on a
dynamic sampling of the conformational space �28�, which
require a distinct simulation effort for every given tempera-
ture. In Sec. IV A we first discuss the dependence of topo-
logical properties of the renormalized directed graph on tem-
perature. The corresponding dynamical features will be then
analyzed.

A. Topological properties of the renormalized graph

Here we investigate the dependence of the topological
properties of the renormalized graph on the temperature. In
Fig. 2 we show how the number of effective nodes N and the
number of connections per node �̄=S /N change with the
temperature for the three sequences defined in Sec. II. Tem-
peratures are varied in the range 0�T�0.08, thus encom-
passing both the glassy and the folding temperatures of all
sequences �see Table I�. In the homopolymer S0, both N and
� exhibit a very weak dependence on T �slowly decreasing
and increasing, respectively�. This indicates that in the ex-
plored temperature range, the graph of S0 is poorly affected
by renormalization. This is due to the peculiar structure of its
PEL: most minima are separated by large barriers �on this
temperature scale�. Conversely, in S1 and S2, N decreases by
more than one order of magnitude while � drops by a factor
2, becoming equal to the value found in S0. A simple argu-
ment can help us to understand this phenomenon. Let us
assume that nodes j and i �with connectivities sj, si, respec-
tively� are assimilated and let � denote the average connec-
tivity before a renormalization. The contribution of the pair
of nodes i and j to the deviation from the average connec-
tivity is �=si+sj −2�. After the renormalization, the contri-
bution of the single node i is ��=si+sj −c−2−�, where c is
the number of common connections of i and j nodes with the
neighboring ones and where we have assumed that the aver-
age connectivity is unaffected by the renormalization process
�correct to leading order in 1 /N�. Accordingly, ��−�=�
−2−c. If c=0 �no common connections�, the average con-
nectivity will increase �as � is certainly larger than 2�. In the
opposite limit, if the two nodes have the same connections,

c=si−1, ��−�=�−si−1. In this case, the larger the si is, the
larger the decrease is. From the numerical analyses, we can
therefore infer that �above T=0.02� the nodes affected by the
renormalization procedure are those characterized by a large
connectivity.

In order to further clarify this issue, we have computed
the distribution of the connectivity � at different tempera-
tures. In all cases, the distributions extend to around 100
connections �see Figs. 3–5�. This limit is not simply due to
the finite statistics but also to geometrical constraints: one
indeed expects that the typical maximum number of neigh-
bors is two times the dimension of the phase space �40 in our
case�. Larger values are possible but are increasingly unlike.
For S0 �see Fig. 3� we also see that the distribution is ap-
proximately a power law and does not depend significantly
on T �this is an obvious consequence of the very few renor-
malization steps that are involved�. For S1 and S2, the zero
temperature distribution is broader, but the nodes character-
ized by a high connectivity are progressively removed, thus
confirming the previous interpretation of the dependence the
average connectivity on T.

A special role is played by the “native” node, which pro-
gressively becomes the main hub of the network, as it turns
out to include an increasing number of renormalized nodes
as T increases. This effect is significantly more pronounced

0 0.02 0.04 0.06 0.08
T
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5
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N
nodes

FIG. 2. �a� Number of nodes N and �b� average connectivity �̄
of the renormalized graph versus temperature T for S0 �empty
circles�, S1 �crosses�, and S2 �filled squares�. In �a� the dashed lines
are exponential fits of the data, due to the adopted log-linear repre-
sentation. The full lines in �b� are drawn to guide the eyes.
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FIG. 3. Sequence S0: the fraction of nodes with connectivity �,
����, in log-log scale at T=0 �full line�, T=0.04 �dashed line�, and
T=0.08 �dotted-dashed line�.
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FIG. 4. Sequence S1: the fraction of nodes with connectivity �,
����, in log-log scale at T=0 �full line�, T=0.04 �dashed line�, and
T=0.08 �dotted-dashed line�.
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in S1 and S2 �where its connectivity increases to �104� than
in S0 �where it is “only” �103�.

Graphs can be also characterized in terms of the spectral

dimension d̃ �25�, which is defined from the formula

R�
� � 
d̃ for 
 → 0, �22�

where R�
� is the integrated density of eigenvalues of the
topological Laplacian operator W0 with eigenfrequency 

�29�.

The dimension d̃ is well defined only in the limit of infi-
nite graphs where 
 can be arbitrarily small. However, also
in cases like the present model, where the topological La-
placian matrix W0 has a finite rank N �see Sec. II C�, one can
define an effective dimension. By denoting the eigenvalues
of Wd with �1��2� ¯ ��k� ¯ ��N, we can define the
integrated density of eigenvalues R��k�. By further identify-
ing 
 with 
k=�k

1/2, the spectral dimension can be estimated
through the approximate relation,

R��k� � �k
d̃/2, �23�

which is again valid in the limit of small �’s. The identifica-
tion of the full spectrum of the topological Laplacian W0
requires to diagonalize a matrix of rank O�105� �see Table
II�, a practically unfeasible task. Upon increasing the tem-
perature, the rank of the renormalized discrete Laplacian ma-

trix W̃0 reduces �see Table VI�, but its diagonalization re-
mains a hard task for standard computational facilities.
Fortunately, in order to estimate the spectral dimension it is

sufficient to determine the lowest part of the Laplacian spec-
trum. This can be done by implementing Lanczos-like diago-
nalization algorithms such as those contained in the AR-
PACK library �30�.

The data plotted in Fig. 6 show that the spectral dimen-

sion takes approximately the same value �d̃�6.5� in all the
three sequences considered in this paper. Moreover, in the
two heteropolymers we see that the effective spectral dimen-
sion decreases to a value close to 5 for T�0.02 �see Fig. 7,
where we report the data for the sequence S1—a very similar
scenario has been found for S2�. This indicates that, above
T=0.02, the renormalization procedure substantially modi-
fies the structure of the directed graphs: regions of high con-
nectivity collapse onto few nodes and the average connectiv-
ity is thereby reduced. This is consistent with what is shown
in Fig. 2.

Altogether, the topological indicators analyzed in this sec-
tion allow us to distinguish the homopolymer S0 from the
heteropolymers. On the other hand, no significant difference
between S1 and S2 has been detected. As discussed in Sec.
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FIG. 5. Sequence S2: the fraction of nodes with connectivity �,
����, in log-log scale at T=0 �full line�, T=0.04 �dashed line�, and
T=0.08 �dotted-dashed line�.

TABLE VI. Rank of the renormalized topological Laplacian ma-

trix W̃0 of the three investigated sequences at various temperatures
below T�.

T S0 S1 S2

0.02 138791 41139 38997

0.04 130326 20537 26292

0.06 117328 9430 15943

0.08 102933 4576 9736

0.01 0.1

λ
1

10

rank

FIG. 6. Log-log plot of the spectrum of eigenvalues of the to-
pological Laplacian matrix W0 of the zero-temperature directed
graph of S0 �empty circles�, S1 �crosses�, and S2 �filled squares�.
The dashed lines refer to power law with exponents of 3.3.
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λ
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100

rank

FIG. 7. Log-log plot of the spectrum of eigenvalues of the to-
pological Laplacian matrix W0 of S1 for five different temperatures:
T=0.00 ���, 0.02�+�, 0.04 ���, and 0.06 ���, 0.08�� �. The data
obtained for different temperatures are shifted horizontally by an
arbitrary constant factor in order to obtain a better view. Notice that
the power-law fit passes from its maximum value of 3.4 at T=0 to
a minimum value of 2.5 above T=0.02.
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III, this seems to be related to the dynamical properties of
trajectories on the directed graphs. In Sec. IV B, we investi-
gate the effect of the graph renormalization on the dynamics.

B. Relaxation times and the low-frequency
spectrum of the Laplacian matrix

In this section we discuss the lowest part of the spectrum
of Laplacian matrix �10� that characterizes the slowest relax-
ation processes. As discussed in Sec. IV A with reference to
W0, also in this case the accomplishment of this task requires
using the Lanczos’ diagonalization procedure.

The renormalization procedure described in Sec. IV A
amounts to a series of transformations that involve the small-
est barriers and therefore short time scales. Accordingly, the
lowest part of the spectrum of W should be unaffected by the
renormalization procedure. The numerical results for T
=0.08 confirm this expectation �at lower temperatures, the
diagonalization of W is too time or memory consuming, al-

though W̃ can be still analyzed�.
In Fig. 8 we show the dependence of the smallest nonzero

eigenvalues of W̃ on the temperature T for the sequences S1
and S2. In both cases, there is a clear evidence of an
Arrhenius-like behavior,

rk � A exp�− B/kBT� , �24�

where A and B are suitable constants, which depend on the
sequence and on the eigenvalue. In particular B measures the
effective height of the energy barrier.

The corresponding eigenvectors are shown in Figs. 9 and
10, where the components are ordered according to the en-
ergy of the corresponding graph node. The absolute values of
the components of w�2�, w�3�, and w�4� are plotted together
with w�1� that was reported for comparison. As shown in
Appendix A, w�i�, for i�2, has zero average. With the only
exception of w�1� �which describes the stationary distribu-
tion�, all the eigenvectors of S2 are localized on some node
of the graph, while only the second eigenvector w�2� of S1 is
localized.

We have verified that for the localized eigenvectors the
energy B corresponds to the height of the lowest energy bar-
rier separating the localization node from the rest of the
graph. This energy barrier is quite high so that the node can
be viewed as a kinetic trap of GD. We have also found that

most of the first 50 nonzero eigenvectors of S2 are localized
as those shown in Fig. 9. Accordingly, many nodes do act as
kinetic traps, thus slowing down many trajectories on the
graph.

In the case of the delocalized eigenvectors of S1, B can be
interpreted as an effective energy barrier separating different
subsets of nodes in the graph. This interpretation is quite
obvious for graphs composed of two weakly connected com-
ponents. In this case, activation processes connect two set of
nodes rather than two single minima. The involved nodes can
be identified by dividing, e.g., each component wi

�2� by wi
�1�

to obtain the “normalized” eigenvector w̄�2�. In fact, it turns
out that the components of w̄�2� are split into two sets of
values, depending whether the corresponding node belong to
the first or to second subgraph �see Appendix B for the de-
tails�. The normalized eigenvectors w�3� and w�4�, shown in
the upper panels of Fig. 11, exhibit a similar behavior al-
though they are split into more than two sets of values. This
indicates that the graph structure of S1 is more intricated
than in the example discussed in Appendix B. Nonetheless,
the interpretation of B as an effective barrier height separat-
ing different regions of the graph remains valid. Notice also
that the corresponding eigenvalues r3 and r4 are more than
four orders of magnitude larger than r2. This shows that the
perturbative argument presented in the Appendixes A and B
provides only a qualitative approximation of what was seen
in Fig. 11.

For what concerns the folding process, we have already
observed in Sec. III that the time scales of equilibration are
orders of magnitude longer than those characterizing the first
passage time tf through the native valley �i.e., the native
minimum and the connected minima�. In fact, according to
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FIG. 8. The eigenvalues rk, for k=2,3 ,4 versus temperature T
in log-reciprocal scale for �a� S1 and �b� S2. The dashed lines are
Arrhenius fits to the data.

0 5000 10000
i

10
-12

10
-6

10
0

|w
(3)

i |

10
-12

10
-6

10
0

w
(1)

i

10
-12

10
-6

10
0

|w
(2)

i |

0 5000 10000
i

10
-12

10
-6

10
0

|w
(4)

i |
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nents of w�2�, w�3�, and w�4� for the slow-folder S2 at T=0.06.
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nents of w�2�, w�3�, and w�4� for the fast-folder S1 at T=0.04.
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our definition of the folding temperature, we can guess that
over the equilibration time scale approximately 50% of the
time is spent in the native valley despite it contains a very
small fraction of the minima �nodes� in the landscape �di-
rected graph�. In the renormalized representation of the di-
rected graph, we expect that the quantitative determination of
the average tf through the native valley �that is reduced to a
single node, as a result of the renormalization� is preserved,
provided the graph is renormalized for temperatures T�Tf.
For instance, we have verified that this is the case of S1 at
T=0.04, where the folding time on the renormalized graph
amounts to approximately 1900 units when averaged over
104 paths.

V. CONCLUSIONS AND PERSPECTIVES

Many phenomena of biological interest are associated
with equilibrium and nonequilibrium processes in polypep-
tidic chains. A suitable description and understanding of such
processes is far from trivial in these complex structures. This
is the main reason why in this paper we have decided to
consider a sufficiently simple and widely investigated model
�16�. In particular, we have analyzed two heteropolymers and
one homopolymer in order to clarify differences and analo-
gies among various typical polypeptidic sequences. In fact,
one of the heteropolymers is known to behave as a fast folder
at variance with the other ones, which exhibit a much slower
relaxation dynamics to their native states.

As a first step, we have described a strategy to reconstruct
the PEL of these simple chains. The search for minima and
first-order saddles has been performed by combining differ-
ent algorithms aiming at a sufficiently careful reconstruction
of the PEL close to the native minimum and up to energy
values of the order of kBTf, where Tf denotes the folding
temperature. Since the number of minima and saddles in-
creases with the energy, the computational cost is already
quite high up to kBTf: going beyond this value is practically
impossible. On the other hand, performing a more extended

search is not expected to add any relevant information. In
fact, we have checked that for sufficiently low temperatures
the main dynamical mechanisms associated with the folding
process and with the relaxation to equilibrium are well re-
produced even if most of the stationary points in the PEL
above kBTf are discarded.

As a next step, we have constructed a directed graph
representation of the dynamics, where the temperature-
dependent molecular dynamics is replaced by a Markov-
chain dynamics. The nodes of the graph correspond to the
local minima of the PEL, while the first-order saddles con-
necting such minima are represented by the links of the
graph. The strength of the links is measured by Langer’s
estimate �10,11� of the hopping rates between connected
minima. We have shown that for temperatures close to or
below Tf, MD simulations are essentially in good quantita-
tive agreement with GD. However, in general, the latter ap-
proach systematically underestimates the hopping rates
mainly because of the poorly reconstructed portion of the
PEL above kBTf.

The main advantage of the graph representation is that
one can apply a renormalization procedure that preserves the
large-scale dynamical properties while cutting out many ir-
relevant degrees of freedom. In fact, the procedure described
in Sec. IV allows to merge many nodes into single entities,
most of which are characterized by a lower connectivity. The
effect of the renormalization is more pronounced in het-
eropolymers than in the homopolymer, thus indicating that
the topological properties are quite different in the two cases.
Moreover, at least in the simple model considered in this
paper, we have found evidence that topological indicators are
not sufficient to discriminate between “fast” and “slow” fold-
ers. A clear distinction can instead be made by analyzing
dynamical and spectral properties of the renormalized La-
placian matrix. Almost by definition, the first passage time tf
from the native configuration is expected to be much shorter
in fast folders. In fact, we find that tf is at least two orders of
magnitude smaller in S1 than in S2. The interesting observa-
tion is that while in S2 tf is comparable to the inverse of the
smallest nonzero eigenvalue of the Laplacian matrix, in S1 tf
is three orders of magnitude shorter. This seemingly awk-
ward result is due to the existence of a local minimum that is
almost decoupled �i.e., it is separated by a high free-energy
barrier� from the rest of the energy landscape. As, during the
equilibration process, it is quite unlikely for the heteropoly-
mer to be trapped in such a minimum, it is clear that it does
not contribute significantly to slowing down of the folding
process. On the other hand, its existence necessarily contrib-
utes to generating a very small low frequency in the Laplac-
ian spectrum.

Moreover, we have found further important differences
between the structures of the normalized eigenvectors w̄i of
S2 an S1. In the former case, all eigenvectors corresponding
to the lowest eigenvalues are localized �at least, this is so for
the first 100 ones�. This indicates that the longer time scales
are dominated by a “forest” of single-minimum kinetic traps
in the energy landscape. Conversely, in S2, there is only one
localized eigenvector that corresponds to a minimum where
the dynamics could be accidentally trapped. All the other
eigenvectors of S2 are extended, a fact which implies that
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FIG. 11. Absolute value of the components of the normalized
eigenvectors w�2�, w�3�, and w�4� for the fast-folder S1 at T=0.04.
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they correspond to sets of multiple minima that have mul-
tiple mutual connections and are thus characterized by faster
relaxation processes. It will be worth exploring to what ex-
tent this is a peculiarity of the simple model we have inves-
tigated in this paper or a more general signature of the dif-
ferences between bad and good folders.

In fact, the methods described in this paper can be ex-
tended also to more realistic models of polypeptides and
single-domain proteins. The reconstruction of a meaningful
portion of the energy landscape will require higher compu-
tational costs and it will be necessary to devise specific tech-
niques to identify the relevant minima. Nonetheless, there
could be a positive payoff since the renormalization proce-
dure would provide an effective characterization of the kinet-
ics of these models, up to extremely long time scales, which
would not be otherwise directly accessible. A first step in this
direction has been attempted in �31�.
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APPENDIX A: PROPERTIES OF THE MASTER
EQUATION

We will here review a few useful properties of the master
equation �Eq. �8�� and those of eigenvectors of the Laplacian
matrix that, although already widely reported in the litera-
ture, might help the reader in understanding the mathemati-
cal details of this paper.

As a preliminary observation we note that by summing
both sides of the master equation over all the nodes of the
graph and invoking the detailed balance condition, one can
easily verify that the total probability is conserved,

d
�
i

Pi�
dt

= − �
i,j=1

N

Pi	i→j + �
i,j

Pj	 j→i = 0. �A1�

The normalization condition �iPi�t�=1 therefore holds at ev-
ery t, which, as we will see later, induces some constraints on
the projections of realistic probability vectors on the eigen-
vectors of the Laplacian matrix W.

As already mentioned, W can be cast into a symmetric
form through a similarity transformation. It therefore admits
a complete basis of orthogonal eigenvectors, each describing
a different mode of decay to equilibrium. Besides orthogo-
nality, the eigenvectors of W share the additional property
that their components are zero sum. In fact, from the eigen-
value equation Wwi

�j�=��j�wi
�j� one gets

wi
�j� =

− �
k=1

N

wi
�j�	i,k + �

k=1

N

wk
�j�	k,i

��j� . �A2�

By summing both sides of this equation over i and using the
detailed balance condition, one finds

�
i=1

N

wi
�j� = 0. �A3�

The only eigenvector that defies this demonstration is
w�1�, the null eigenvector defined in Eq. �11�, which has posi-
tive components and can be normalized to unity. Using this
normalization one can write

�
i=1

N

wi
�j� = 1,j . �A4�

Actually, this condition is just a consequence of the fact that
the master equation conserves probability. Indeed, since
eigenvectors form a complete basis, each probability distri-
bution of initial conditions on the graph P�0� can be ex-
pressed as P�0�=� j=1

N � jw
�j�. It will then evolve in time ac-

cording to

P�t� = �
j=1

N

� jw
�j� exp−rjt. �A5�

Summing over the components of P�t�,

�
i=1

N

Pi�t� = �
j=1

N

� j1,j exp−rjt = �0. �A6�

Hence, in order to have �i=1
N Pi�t�=1, �0 must necessarily be

1.

APPENDIX B: SPECTRAL CLUSTERING

We now justify the use of normalized components as an
effective tool to uncover the inherent structure of eigenvec-
tors. We define the normalized components of a vector v on
a graph as the ratio site-to-site of the vector component to the
local value of the stationary probability: v̄i=vi /wi

�0�. We will
here extend an argument originally proposed for discrete
graphs �32� to weighted ones and show that, when a graph is
divided into two weakly connected subgraphs A and B, the
normalized components of the first nonzero eigenvector as-
sume only two possible values, one for A and one for B.

The Laplacian matrix W can be written as the sum of two
matrices: W=D−	T, where 	 is the transition rate matrix
and D is a diagonal matrix, Di,j =i,j�k=1

N 	i,k. First of all, we
consider the case in which the graph is composed of two
disconnected subsets of nodes A and B. In this case the
Laplacian matrix will be referred to as W0. Since 	i,j =0 for
each i�A and j�B, W0 can be written as

W0 = 
DAA − 	AA
T 0

0 DBB − 	BB
T � . �B1�

Let now use the null eigenvector w�1� of W0 to construct two
vectors wA and wB as follows:
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wi
A = �wi

�1�, i � A
0, i � B ,

� wi
B = � 0, i � A

wi
�1�, i � B .� �B2�

It is easy to show that both wA and wB are eigenvectors of
W0 with a null eigenvector, and the same holds for any linear
combination v=awA+bwB. More generally when a graph is
composed of n disconnected subgraphs the kernel of its La-
placian matrix has dimension n.

Let us now suppose that the two subgraphs A and B are
not properly disconnected but do share a small number of
connections. In this case the Laplacian matrix has the form
W=W0+W1, with

W1 = 
 DAB − 	AB
T

− 	BA
T DBA

� , �B3�

where 	AB and 	BA carry the information about connections
between A and B, while DAB and DBA carry the information
on the effect these connections have on the diagonal of the
Laplacian matrix.

We now look for the eigenvectors of W among vectors of
the form v=awA+bwB,

Wv = �W0 + W1��awA + bwB� = W1�awA + bwB� . �B4�

In other words if any eigenvector of W exists, which is a
linear combination of wA and wB, it is also an eigenvector of
W1. We will therefore look for the eigenvectors of this last
matrix having the desired form awA+bwB.

For sufficiently small W1 the vector W1�awA+bwB� can
be approximately written as a linear combination of wA and
wB. To this purpose we introduce the projector on the space
of the linear combinations of wA and wB,

�AB = �wA,wB� , �B5�

where �wA ,wB� is a N�2 matrix whose columns are the two
column vectors wA and wB. The vector W1�awA+bwB� can
now be written as

W1�awA + bwB� � �ABW1�awA + bwB� = W̃1
a

b
��wA,wB� ,

�B6�

where we have introduced W̃1=�AB
T W1�AB, a 2�2 matrix

that reproduces the effect of W1 in the subspace of the linear

combinations of wA and wB. After some algebra W̃1 reads as
follows:

W̃1 = � �
i�A, j�B

wi
�1�2

	i,j − �
i�A,j�B

wi
�1�wj

�1�	 j,i

+ �
i�B, j�A

wi
�1�wj

�1�	 j,i �
i�B, j�A

wi
�1�2

	i,j � .

�B7�

Since w�1� satisfies the detailed balance, and existing a con-
nection from B to A for each connection from A to B, one
has

�
j�B

wi
�1�	i,j = �

j�B
wj

�1�	 j,i, ∀ i � A . �B8�

Analogously,

�
j�A

wi
�1�	i,j = �

j�A
wj

�1�	 j,i, ∀ i � B . �B9�

We can therefore define two quantities �
=�i�A, j�Bwi

�1�wj
�1�	 j,i and �=�i�B, j�Awi

�1�wj
�1�	 j,i that cast

W̃1 in a particularly simple form

W̃1 = 
 � − �

− � �
� . �B10�

It is important to notice that if the two subgraphs A and B
are weekly connected � and � will be relatively small since
there are few connections such that 	 j,i�0 for i�A and j
�B.

The two eigenvalues of W̃1 are 0 and �+�, referring to
the eigenvectors


1

1
� and 
 �

− �
� , �B11�

respectively. It can finally be shown that by backprojecting

with �AB
T these two eigenvectors of W̃1 to the entire

N-dimensional space one obtain two eigenvectors of W1

characterized by the same eigenvalues. According to Eq.
�B4� these are also eigenvectors of W. More precisely by this
procedure one obtains the following:

�i� wA+wB that obviously coincides with w�1� and is asso-
ciated to the null eigenvalue also according to the perturba-
tive calculation and

�ii� u=�wA−�wB, associated to the eigenvalue �+� that
is a small number and will therefore lay in the end of the
spectrum of W.

It is now straightforward to verify that the normalized
coordinates of u get the values � for nodes belonging to A
and −� for nodes belonging to B. In this sense the analysis of
the normalized coordinates of the eigenvectors of W can be
employed as a spectral method for the identification of clus-
ters, portion of the graph characterized by a high degree of
internal connectivity, and a small number of connections
with the rest of the graph.
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